Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 2): 131684, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663695

RESUMO

Cracking, warping, and decaying stemming from wood's poor dimensional stability and durability are the most annoying issues of natural wood. There is an urgent need to address these issues, of which, sustainable and green chemical treatments are favorably welcomed. Herein, we developed a facile method through the incorporation of environmentally friendly biopolymer lignin into wood cells for wood dimensional stability and durability enhancement. Enzymatic hydrolysis lignin (EHL) was dissolved into various solvents followed by impregnation and drying to incorporate lignin into wood cells. Impregnation treatment was developed to incorporate into wood to improve its dimensional stability, durability, and micromechanics. The anti-swelling efficiency reached up to 99.4 %, the moisture absorption decreased down to 0.55 %, the mass loss after brown rot decay decreased to 7.22 %, and the cell wall elasticity as well as hardness increased 8.7 % and 10.3 %, respectively. Analyses acquired from scanning electron microscopy, fluorescent microscopy, and Raman imaging revealed that the EHL was successfully colonized in cell lumen as well as in cell walls, thus improved wood dimensional stability and durability. Moreover, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed EHL interaction with the cell wall components, thus the wood mechanical property was not impaired significantly, whereas nanoindentation data indicated even slight mechanical enhancement on the cell walls. This facile approach can improve the wood properties in multiple aspects and remarkably enhance the outdoor performance of modified wood products. In addition, using lignin as a natural modifying agent to improve wood performance will have a great positive impact on the environment.

2.
Polymers (Basel) ; 14(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36365634

RESUMO

Fast-growing wood has become a major source of materials for the wood industry in recent years, but defects have limited its use. Therefore, modification is urgently needed for the more efficient application of wood products. In this study, a 30 to 50% solution of furfuryl alcohol (FA) was impregnated into Douglas fir sapwood. The microstructure and thermal properties of the specimens before and after furfurylation were evaluated by different techniques. The weight percentage gain (WPG) of modified wood increased up to 22.97%, with the polymerized FA distributed in cell lumens and cell walls, as well as chemically bound to wood components. The polyfurfuryl alcohol (PFA) was mainly located in the tracheids, ray parenchyma cells, and resin canals. In addition, the furfurylated cell walls were greatly thickened. Raman spectra showed that modified wood had significant background fluorescence that covered other peaks. Differential Scanning Calorimetry analysis revealed that the cross-linking reaction between FA and wood changed the shape of curves, with no endothermic or exothermic peaks within the programmed temperature. Moreover, Thermogravimetry and Dynamic Mechanical Analysis results both confirmed that the furfurylation increased the thermal stability of Douglas fir. The percentage of the final mass loss of untreated specimen was 80.11%, while the highest one of furfurylated specimen was 78.15%, and it gradually decreased with increasing FA concentration. The storage modulus (E') and loss modulus (E″) of the furfurylated wood were both lower, and the damping factor (tan δ) was higher than the untreated one. When the temperature reaches about 75 °C, the untreated specimen began to soften and deform. At 90 °C, it fractured completely while the furfurylatedone remained stable. This study demonstrated that furfurylation can improve wood properties and elongate its service life.

3.
Int J Biol Macromol ; 220: 159-174, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981669

RESUMO

With the increasing demands on sustainability in the material science and engineering landscape, the use of wood, a renewable and biodegradable material, for new material development has drawn increasing attentions in the materials science community. To promote the development of new wood-based materials, it is critical to understanding not only wood's hierarchical structure from molecule to macroscale level, but also the interactions of wood with other materials and chemicals upon modification and functionalization. In this review, we discuss the recent advances in the Raman imaging technique, a new approach that combines spectroscopy and microscopy, in wood characterization and structural evolution monitoring during functionalization. We introduce the principles of Raman spectroscopy and common Raman instrumentations. We survey the use of traditional Raman spectroscopy for lignocellulosic material characterizations including cellulose crystallinity determination, holocellulose discrimination, and lignin substructure evaluation. We briefly review the recent studies on wood property enhancement and functional wood-based material development through wood modification including thermal treatment, acetylation, furfurylation, methacrylation, delignification. Subsequently, we highlight the use of the Raman imaging for visualization, spatial and temporal distribution of wood cell wall structure, as well as the microstructure evolution upon functionalization. Finally, we discuss the future prospects of the field.


Assuntos
Celulose , Lignina , Parede Celular/química , Celulose/química , Lignina/química , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...